If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-1672x+33600=0
a = 1; b = -1672; c = +33600;
Δ = b2-4ac
Δ = -16722-4·1·33600
Δ = 2661184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2661184}=\sqrt{64*41581}=\sqrt{64}*\sqrt{41581}=8\sqrt{41581}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1672)-8\sqrt{41581}}{2*1}=\frac{1672-8\sqrt{41581}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1672)+8\sqrt{41581}}{2*1}=\frac{1672+8\sqrt{41581}}{2} $
| 67+2a=30 | | (2x-3)*(x+4)=6 | | -7m+7=9+4m | | 0.5t=0.4+.03t | | (x+3)*3+2=4+2 | | (4/3p)=(3/2p)+4/3 | | 14=2y+6 | | n+18+3n-16=6n-20 | | 3x2=11x-31 | | 7x-4=-2x+1+9x-5 | | (x+1)2−36=0 | | 8x+4=-4x+12 | | 5(x-2)=-3x+41 | | x+5/6=41/36 | | 21=-3t | | 5x10(x+3)+25(x+5)=435 | | 8x4=-4x+12 | | 3+(3+2)4+100=z | | 27x2+7x+27=0 | | 2(4x+1)=-2(2x-3)-3x | | 5(3x+2x)-3=52 | | 2+4g=16-3g | | 2(x+4)-5=2x+3 | | (t-8)(t+3)=t-8 | | 12-(1/5r)=2r+1 | | 100x^2=1 | | 4x-2=3x+4 | | 14=31.7–3x | | (1/4x)-4=(3/8x) | | -37=11x-4 | | -20+-4x=-6x | | 3y2-33y=-84 |